anonymous
  • anonymous
Solve the semi-imfinite plate problem if the bottom edge of width 20 is held at T = 0o for 0 < x < 10, and T = 100o for 10< x<20. And the other sides are at 0o
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Solve the semi-imfinite plate problem if the bottom edge of width 20 is held at: \[T = 0^{o} \rightarrow 0 < x < 10\]\[T = 100^{o} \rightarrow 10 < x < 20\] and the other sides are at \(\ 0^{o}\)
anonymous
  • anonymous
|dw:1366518323249:dw| @oldrin.bataku hbu mate ??
anonymous
  • anonymous
have idea ?? i'm little bit confused for \(\ 100^{o}\) ---> 10 < x < 20..,

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Is this similar to the Fourier heat problem?
anonymous
  • anonymous
gerry this is the same problem except that boundary condition for bottom edge
anonymous
  • anonymous
we had (note that 10 turens to 20)\[T = \sum_{n=1}^{\infty} a_ne^{-\frac{n \pi}{20} y} \sin (\frac{n \pi}{20} x)\]now for evaluating \(a_n\) using fourier series\[T = 0 \rightarrow 0 < x < 10 \\ T = 100 \rightarrow 10 < x < 20 \\ \ \ @ \ \ y=0\]so\[a_n=\frac{2}{20} (\int_{0}^{10} 0 \times \sin (\frac{n \pi}{20} x) \ \text{d}x+\int_{10}^{20} 100 \times \sin (\frac{n \pi}{20} x) \ \text{d}x)\]\[a_n=\frac{1}{10} \int_{10}^{20} 100 \times \sin (\frac{n \pi}{20} x) \ \text{d}x=...\]makes sense?

Looking for something else?

Not the answer you are looking for? Search for more explanations.