Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Solve the semi-imfinite plate problem if the bottom edge of width 20 is held at T = 0o for 0 < x < 10, and T = 100o for 10< x<20. And the other sides are at 0o

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Solve the semi-imfinite plate problem if the bottom edge of width 20 is held at: \[T = 0^{o} \rightarrow 0 < x < 10\]\[T = 100^{o} \rightarrow 10 < x < 20\] and the other sides are at \(\ 0^{o}\)
|dw:1366518323249:dw| @oldrin.bataku hbu mate ??
have idea ?? i'm little bit confused for \(\ 100^{o}\) ---> 10 < x < 20..,

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Is this similar to the Fourier heat problem?
gerry this is the same problem except that boundary condition for bottom edge
we had (note that 10 turens to 20)\[T = \sum_{n=1}^{\infty} a_ne^{-\frac{n \pi}{20} y} \sin (\frac{n \pi}{20} x)\]now for evaluating \(a_n\) using fourier series\[T = 0 \rightarrow 0 < x < 10 \\ T = 100 \rightarrow 10 < x < 20 \\ \ \ @ \ \ y=0\]so\[a_n=\frac{2}{20} (\int_{0}^{10} 0 \times \sin (\frac{n \pi}{20} x) \ \text{d}x+\int_{10}^{20} 100 \times \sin (\frac{n \pi}{20} x) \ \text{d}x)\]\[a_n=\frac{1}{10} \int_{10}^{20} 100 \times \sin (\frac{n \pi}{20} x) \ \text{d}x=...\]makes sense?

Not the answer you are looking for?

Search for more explanations.

Ask your own question