Here's the question you clicked on:
DLS
@yrelhan4
\[\large x_1=(u_1\cos \theta_1)t_1~,y_1=(u_1 \sin \theta_1)t-\frac{1}{2}g t^2\] \[\large x_2=(u_2\cos \theta_2)t_2~\And~y_2=(u_2 \sin \theta_2)t-\frac{1}{2}g t^2\] The position of one projectile w.r.t another projectile is: \[\large x=x_1-x\] \[\large y=y_1-y_2\] \[\frac{y}{x}=\frac{u_1 \sin \theta_1-u_2 \sin \theta_2}{u_1 \cos \theta_1-u_2 \cos \theta_2}=constant\] \[\LARGE y ~\alpha ~x\] Equation of straight line Thus,Motion of a projectile as observed from another projectile is a straight line
@yrelhan4 bc tujhe kisne medal aur kyun dia -_-