anonymous
  • anonymous
Solve the following using the quadratic formula. Round to the nearest tenth, if necessary. x2 + 5x - 2 = 0 {-2, 5} {-5.4, 0.4} {-1, 0.5} No real solution
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mertsj
  • Mertsj
Do you know the quadratic formula?
Mertsj
  • Mertsj
Look in you book. It's in there.
Mertsj
  • Mertsj
Did you find it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes
Mertsj
  • Mertsj
So in your equation, a = 1, b = 5, and c = -2 Just plug in those numbers in place of the letters.
Mertsj
  • Mertsj
\[x=\frac{-5\pm \sqrt{5^2-4(1)(-2)}}{2(1)}\]
Mertsj
  • Mertsj
Does yours look like that so far?
anonymous
  • anonymous
yes
Mertsj
  • Mertsj
\[x=\frac{-5\pm \sqrt{33}}{2}\]
Mertsj
  • Mertsj
Oh gees. They gave the answers in decimal form so now we need a calculator. Do you have one handy?
anonymous
  • anonymous
yes
Mertsj
  • Mertsj
\[\frac{-5+\sqrt{33}}{2}=.37\approx .4\] \[\frac{-5-\sqrt{33}}{2}=-5.37\approx -5.4\]
Mertsj
  • Mertsj
Is that what you got?
anonymous
  • anonymous
yes
Mertsj
  • Mertsj
Good job!!
anonymous
  • anonymous
Thanks:)
Mertsj
  • Mertsj
you're welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.