Can someone help me finish this problem? Medal Rewarded!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can someone help me finish this problem? Medal Rewarded!

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
In attachment
Hi... Do you know what type of problem is that

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Yea its an induction problem.
Great.. I have a request for you... pls write the question here
Ok Ill try my best to put it on here correctly
Thanks.. for that
Ok Prove the statement by mathematical induction. 3 + 5 + 7 + . . . + (2n + 1) = n(n + 2) 1. proposition is true when n = 1, since n(n + 2) = 1(1 + 2) =3 2. We will assume that the proposition is true for a constant k = n so, 3 + 5 + 7 + . . . + (2k + 1) = __________(k + __________) 3. Then, 3 + 5 + 7 + . . . + (2k + 1) + (_____k + _____) = k(k + 2) + (________k + _______)
so 1st one,
for the statement n= 1, the state ment reduces to\[1^2= \frac { 1\cdot 2\cdot 3 }{ 6 } \] and is obviously true. Assuming the statement is true for n = k: \[{ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+.....+{ 4 }^{ 2 }=\frac { k(k+1)(2k+1) }{ 6 } \] , we will prove that the statement must be true for n = k + 1: \[{ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+.....+{ (k+1) }^{ 2 }=\frac { (k+1)(k+2)(2k+3) }{ 6 } \] The left-hand side of (2) can be written as \[{ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+....+{ k }^{ 2 }+{ (k+1) }^{ 2 } \] In view of (1), this simpli es to: \[{ (1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+....+{ k }^{ 2 })+{ (k+1) }^{ 2 }=\frac { k(k+1)(2k+1) }{ 6 } +{ (k+1) }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { k(k+1)(2k+1)+6{ (k+1) }^{ 2 } }{ 6 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { k(k+1)[k(2k+1)+6{ (k+1) }^{ 2 }] }{ 6 } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { (k+1)({ 2k }^{ 2 }+7k+6) }{ 6 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { (k + 1)(k + 2)(2k + 3) }{ 6 } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \]
for the last part as its not clear
\[{ (1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+....+{ k }^{ 2 })+{ (k+1) }^{ 2 }=\frac { k(k+1)(2k+1) }{ 6 } +{ (k+1) }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { k(k+1)(2k+1)+6{ (k+1) }^{ 2 } }{ 6 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { k(k+1)[k(2k+1)+6{ (k+1) }^{ 2 }] }{ 6 } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { (k+1)({ 2k }^{ 2 }+7k+6) }{ 6 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { (k+1)(k+2)(2k+3) }{ 6 } \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \]
Now lets solve the second one
okay
I realy dont know what you did here, but My work didnt ask for all this. Its really confusing.
The solution for 2
or goto this http://home.cc.umanitoba.ca/~thomas/Courses/textS1-21.pdf
ok Ill try this..

Not the answer you are looking for?

Search for more explanations.

Ask your own question