Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

To solve |3x+2|<4, split the equation into 3x + 2 < 4 and 3x + 2 < -4 3x + 2 < 4 and 3x + 2 > - 4 3x - 2 < 4 and 3x - 2 > - 4 3x + 2 < - 4 and 3x + 2 > 4

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Is it 3x + 2 < 4 and 3x + 2 < -4 ? (The first choice)
need help
Yes

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

have answer choices
There up there with the question
They're
it's not the first choice. see how the inequality signs point the same way? the inequality signs should point in opposite directions.
do you see why?
Yes, I do
So then it'd be the second choice?
yes
an easy way to do this problem if you have a graphing calculator is to graph y=abs(3x-2)-4 (solve your equation for zero, then put y in instead of the zero)
Ok, I'll try that!
Could you help me with one more question?
sure
but I have a question for you afterward
Ok!
Which domain number causes this relation not to be a function? R = { (-1, -1), (2, 0), (2, 1), (3, 1), (4, 4) } -1 zero 1 2
how much do you already know about what is and is not a function?
a relation is not a function if it has two y-values for one x-value.
I thought it was 1?
domain is x-values which x-value appears twice and has two different y-values?
2
yes
Ok, your question?
I pm'd it to you

Not the answer you are looking for?

Search for more explanations.

Ask your own question