• anonymous
Water at 20 C and 100 kPa is brought to 100kPa and 1500 C. Find the change in the specific internal energy, using the water tables and ideal gas tables. When answering, can you walk me through which tables you use and how you use them?
The first law of thermodynamics
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
you won't be using the ideal gas tables in this problem, but what you will do is look up the temperature at 1 bar (=100kpa) in table A-3. The temperature is 99.63 degrees. Look up the pressure corresponding to 20 degrees C. It is 0.02339 bar. Since 1 bar is much greater than 0.02339 bar, we can treat the H20 as a compressible liquid, meaning u ~ uf. You just look up the uf value at 20 degrees C, and that is your initial specific internal energy. In regards to the 1500 degrees C, I don't see that on a table, but if anywhere, you should look for specific internal energy at 1500 degrees C in the superheated table.

Looking for something else?

Not the answer you are looking for? Search for more explanations.