A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing
 one year ago
A liquid water turbine receives 2 kg/s water at 2000 kPa, 20 C with a velocity of 15 m/s. The exit is at 100 kPa, 20 C, and very low velocity. Find the specific work and the power produced.
 one year ago
A liquid water turbine receives 2 kg/s water at 2000 kPa, 20 C with a velocity of 15 m/s. The exit is at 100 kPa, 20 C, and very low velocity. Find the specific work and the power produced.

This Question is Open

electrokid
 one year ago
Best ResponseYou've already chosen the best response.2applying Bernoulli's equation, we have \[ P_1+{1\over2}\rho v_1^2=P_2+{1\over 2}\rho v_2^2\\ P_1=2000\times10^3{\rm Pa}\\ P_2=100\times10^3{\rm Pa}\\ v_1=15{\rm m/s}\\ v_2=?\\ \text{then,}\\ \text{work done}=\text{change in kinetic energy}\\ W={1\over 2}mv_2^2{1\over 2}mv_2^2\\ {\rm then,}\\ P={W\over t} \]

abb0t
 one year ago
Best ResponseYou've already chosen the best response.0Whoa. Here's another method without using differential equations The energy equation I found was given by: \(h_1+\frac{1}{2}V_1^2+gZ_1=h_2\frac{1}{2} V_2^2+gZ_2+w_T\) \(Z_1 = Z_2\) and \(V_2=0\) \(h_1 = 85.82 \frac{kj}{kg}\) and \(h_2 = 83.94\) same units. which is at 2.3 kPa so u add \(\Delta PV\) = \(97.7 \times 10^{2}\) plug in everything, you get 1.99 kj/ kg and for \(W_T\) = \(m \times w_T\) = 3.985 specific kinetic energy is not relevent here

electrokid
 one year ago
Best ResponseYou've already chosen the best response.2I did not use a differential eq. what you've got is the same as mine but with divided by the density
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.