anonymous
  • anonymous
urgent help needed pls help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
UnkleRhaukus
  • UnkleRhaukus
is uninhibited decay the same as exponential decay ?
anonymous
  • anonymous
i am not sure @UnkleRhaukus

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
\[\big[\text{NaCl}\big](t) = \big[\text{NaCl}\big]_0e^{-t/\tau}\]
UnkleRhaukus
  • UnkleRhaukus
\[\frac{\big[\text{NaCl}\big](t)}{\big[\text{NaCl}\big]_0} = e^{-t/\tau}\\ \ln\tfrac{\big[\text{NaCl}\big](t)}{\big[\text{NaCl}\big]_0} = -t/\tau\\ \tau\ln\tfrac{\big[\text{NaCl}\big]_0}{\big[\text{NaCl}\big](t)} = t\\\tau = \frac t{\ln\tfrac{\big[\text{NaCl}\big]_0}{\big[\text{NaCl}\big](t)}}\]
UnkleRhaukus
  • UnkleRhaukus
what do you think?
anonymous
  • anonymous
@UnkleRhaukus i don't get what u wrote
UnkleRhaukus
  • UnkleRhaukus
any of it?
UnkleRhaukus
  • UnkleRhaukus
do you know where i got the original equation from ?
Mertsj
  • Mertsj
\[A=A _{0}e ^{-kt}\]
anonymous
  • anonymous
@UnkleRhaukus pls could u help with this question
1 Attachment
Mertsj
  • Mertsj
tangent negative, sin positive puts you in quadrant II
Mertsj
  • Mertsj
|dw:1367156027644:dw|
anonymous
  • anonymous
@UnkleRhaukus for the above question pls can u draw the equation because the equation u wrote is in wierd computer language form its really urgent pls help thanks
UnkleRhaukus
  • UnkleRhaukus
UnkleRhaukus
  • UnkleRhaukus
i found \[\tau=\tfrac1k\sim1 \text{day} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.