goformit100
  • goformit100
Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and(–1,–1) are the vertices of a right angled triangle.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

goformit100
  • goformit100
hartnn
  • hartnn
which grade Q's are u asking ?
goformit100
  • goformit100
i hve give the exam for 12th this year.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
u know pythagoras theorem and distance formula ?
anonymous
  • anonymous
Use the distance formula.
goformit100
  • goformit100
No I an very weak at co-ordinate geometry :'(
hartnn
  • hartnn
Distance between points (x1,y1) and (x2,y2) is \(\huge d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\) does this help ??
anonymous
  • anonymous
@goformit100 then there is one concept - Distance formula. If (x1,y1) and (x2,y2) are two given points on any co-ordinate plane, the distance b/w 2 points is given by - \[\sqrt{(x1-x2)^2 + (y1-y2)^2}\]
goformit100
  • goformit100
@hartnn How to use it here ?
hartnn
  • hartnn
take 2 points at a time (4, 4), (3, 5) x1 = 4 y1 =4 x2 = 3 y2=5 d1=... ?
goformit100
  • goformit100
ok , I got it Thank You Sir

Looking for something else?

Not the answer you are looking for? Search for more explanations.