anonymous
  • anonymous
Please help!! The vertices of a triangle are A(16, 0), B(9, 2), and C(0, 0). Which side is also an altitude with a slope of -2/7? side AB side BC side AC
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
AB Need explanation?
anonymous
  • anonymous
yes please
anonymous
  • anonymous
Try to draw a diagram roughly, points A and C are on the x axis. So from C to B the line will go up (positive slope), and from B to A the line will go down (negative slope). Does that makes any sense? :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yupp
anonymous
  • anonymous
|dw:1367265570052:dw|
anonymous
  • anonymous
slope of AB=(2-0)/(9-16)=-2/7 AB=sqrt[(9-16)^2+(2-0)^2]=sqrt(49+4)=sqrt53 BC=sqrt[(0-9)^2+(0-2)^2]=sqrt85 AC=sqrt [(0-16)^2+(0-0)^2]=16 neither AC^2=BC^2+AB^2,Because 53+85=138 not =to 256 nor BC^2=AC^2+AB^2,Because 256+53=309 not= to 85 AB is not an altitude of triangle ABC though it has slope -2/7

Looking for something else?

Not the answer you are looking for? Search for more explanations.