anonymous
  • anonymous
using derivatives verify that: p(x,t)= 1/( Sqrt[ 4 Pi Dt]) * Exp[-x^2/ 4 Dt] is a solution of hte diffusion equation: dp/dt= D d^2p/dx^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I'm sure you mean the partial derivatives where you wrote "dp/dt": \[\frac{\partial p}{\partial t}=D\frac{\partial^2p}{\partial x^2}\] Given \(p(x,t)=\dfrac{1}{\sqrt{4\pi Dt}}\exp\left({\dfrac{-x^2}{4}Dt}\right)\), all you have to do is find the partial derivatives \(\dfrac{\partial p}{\partial t}\) and \(\dfrac{\partial^2 p}{\partial x^2}\) and plug them into the equation.
anonymous
  • anonymous
how do i find the partial derivative?
anonymous
  • anonymous
bec i think i got to dp/dt part but d^2/ dx^2 i dont know how to do it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
It's a lot like taking a regular derivative. The partial derivative of a function \(f(x,t)\) with respect to \(t\), or \(\dfrac{\partial f}{\partial t}\), is obtained by differentiating the function with respect to \(t\), but fixing \(x\) as a constant. As an example: Suppose \(f(x,t)=xt\). Then \(\dfrac{\partial f}{\partial x}=t\) and \(\dfrac{\partial f}{\partial t}=x\), since \(t\) is considered constant in the first and \(x\) is considered to be constant in the second.
anonymous
  • anonymous
For this particular function, you'll have your work cut out for you. Plenty of chain rule and product rule.
anonymous
  • anonymous
I actually just need to code this in mathematica, not figure it all out. lol
anonymous
  • anonymous
In that case, just use the differentiation operator. In Mathematica, you'd write \(\dfrac{\partial p}{\partial x}=\) D[p(x,t),t] \(\dfrac{\partial^2 p}{\partial x^2}=\) D[D[p(x,t), x],x] where p(x,t) is the given function, obviously. Here's the partial with respect to t: http://www.wolframalpha.com/input/?i=D%5B1%2F%28+Sqrt%5B+4+Pi*+D*t%5D%29++*+Exp%5B-x%5E2%2F+4+D*t%5D%2Ct%5D And here's the 2nd-order partial with respect to x: http://www.wolframalpha.com/input/?i=D%5BD%5B1%2F%28+Sqrt%5B+4+Pi*+D*t%5D%29++*+Exp%5B-x%5E2%2F+4+D*t%5D%2Cx%5D%2Cx%5D

Looking for something else?

Not the answer you are looking for? Search for more explanations.