Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

liliy

using derivatives verify that: p(x,t)= 1/( Sqrt[ 4 Pi Dt]) * Exp[-x^2/ 4 Dt] is a solution of hte diffusion equation: dp/dt= D d^2p/dx^2

  • 11 months ago
  • 11 months ago

  • This Question is Closed
  1. SithsAndGiggles
    Best Response
    You've already chosen the best response.
    Medals 0

    I'm sure you mean the partial derivatives where you wrote "dp/dt": \[\frac{\partial p}{\partial t}=D\frac{\partial^2p}{\partial x^2}\] Given \(p(x,t)=\dfrac{1}{\sqrt{4\pi Dt}}\exp\left({\dfrac{-x^2}{4}Dt}\right)\), all you have to do is find the partial derivatives \(\dfrac{\partial p}{\partial t}\) and \(\dfrac{\partial^2 p}{\partial x^2}\) and plug them into the equation.

    • 11 months ago
  2. liliy
    Best Response
    You've already chosen the best response.
    Medals 0

    how do i find the partial derivative?

    • 11 months ago
  3. liliy
    Best Response
    You've already chosen the best response.
    Medals 0

    bec i think i got to dp/dt part but d^2/ dx^2 i dont know how to do it

    • 11 months ago
  4. SithsAndGiggles
    Best Response
    You've already chosen the best response.
    Medals 0

    It's a lot like taking a regular derivative. The partial derivative of a function \(f(x,t)\) with respect to \(t\), or \(\dfrac{\partial f}{\partial t}\), is obtained by differentiating the function with respect to \(t\), but fixing \(x\) as a constant. As an example: Suppose \(f(x,t)=xt\). Then \(\dfrac{\partial f}{\partial x}=t\) and \(\dfrac{\partial f}{\partial t}=x\), since \(t\) is considered constant in the first and \(x\) is considered to be constant in the second.

    • 11 months ago
  5. SithsAndGiggles
    Best Response
    You've already chosen the best response.
    Medals 0

    For this particular function, you'll have your work cut out for you. Plenty of chain rule and product rule.

    • 11 months ago
  6. liliy
    Best Response
    You've already chosen the best response.
    Medals 0

    I actually just need to code this in mathematica, not figure it all out. lol

    • 11 months ago
  7. SithsAndGiggles
    Best Response
    You've already chosen the best response.
    Medals 0

    In that case, just use the differentiation operator. In Mathematica, you'd write \(\dfrac{\partial p}{\partial x}=\) D[p(x,t),t] \(\dfrac{\partial^2 p}{\partial x^2}=\) D[D[p(x,t), x],x] where p(x,t) is the given function, obviously. Here's the partial with respect to t: http://www.wolframalpha.com/input/?i=D%5B1%2F%28+Sqrt%5B+4+Pi*+D*t%5D%29++*+Exp%5B-x%5E2%2F+4+D*t%5D%2Ct%5D And here's the 2nd-order partial with respect to x: http://www.wolframalpha.com/input/?i=D%5BD%5B1%2F%28+Sqrt%5B+4+Pi*+D*t%5D%29++*+Exp%5B-x%5E2%2F+4+D*t%5D%2Cx%5D%2Cx%5D

    • 11 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.