hexagon001
  • hexagon001
how is this?..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hexagon001
  • hexagon001
\[\frac{ 1 }{\bar z} =\frac{ z }{ |z|^{2} }\]
hexagon001
  • hexagon001
@luckythebest help
hexagon001
  • hexagon001
@.Sam. help

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hexagon001
  • hexagon001
@ajprincess help
hexagon001
  • hexagon001
ive figured it out.. \[|z|^2=z \bar z\] thus a simple rearranging will give the above...
.Sam.
  • .Sam.
Yeah that's the answer but you might wanna figure out\[|z|^2=z \bar z\]
hexagon001
  • hexagon001
i know how to figure that out. thanks... time consuming to type
.Sam.
  • .Sam.
alright
hexagon001
  • hexagon001
how about the following... \[q(z)=\frac{ -1+8i }{ \bar z }\] what is \[\bar q(z)\] ?
hexagon001
  • hexagon001
@.Sam.
hexagon001
  • hexagon001
or @anyone
ajprincess
  • ajprincess
does this come under complex numbers?
hexagon001
  • hexagon001
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.