hexagon001
  • hexagon001
how is this?..
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

hexagon001
  • hexagon001
\[\frac{ 1 }{\bar z} =\frac{ z }{ |z|^{2} }\]
hexagon001
  • hexagon001
@luckythebest help
hexagon001
  • hexagon001
@.Sam. help

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hexagon001
  • hexagon001
@ajprincess help
hexagon001
  • hexagon001
ive figured it out.. \[|z|^2=z \bar z\] thus a simple rearranging will give the above...
.Sam.
  • .Sam.
Yeah that's the answer but you might wanna figure out\[|z|^2=z \bar z\]
hexagon001
  • hexagon001
i know how to figure that out. thanks... time consuming to type
.Sam.
  • .Sam.
alright
hexagon001
  • hexagon001
how about the following... \[q(z)=\frac{ -1+8i }{ \bar z }\] what is \[\bar q(z)\] ?
hexagon001
  • hexagon001
@.Sam.
hexagon001
  • hexagon001
or @anyone
ajprincess
  • ajprincess
does this come under complex numbers?
hexagon001
  • hexagon001
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.