\[\color{green} {\text{{Born in 1992 ????}}}\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[\color{green} {\text{{Born in 1992 ????}}}\]

Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

nah I was born is 15 BC
lol okay i got a math contest question published in 1992
Then post it !

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\text{Find the largest integer,\not exceeding}\huge \prod_{n=1}^{1992}\frac{ 3n+2 }{ 3n+1 }\]
On my first attempt it seems there is a pattern that is followed involving a sequence of cancellation .Let me see if its right
my bad ..The pattern didnt help
so we have \[\frac{ 5 }{ 4 }\frac{ 8 }{ 7 }\frac{ 11 }{ 10 }...\frac{ 3(1992) +2}{3(1992)+1 }\]
i wonder if this cud help\[\huge \frac{ a_1+a_2+a_3...+a_n }{ n }\le \sqrt[n]{a_1a_2a_3...a_n}\]
I think this may help you more , \[(3n+2)/(3n+1) = 1+ 1/(3n+1)\] That would be giving you a sequence directly...
Using Euler-Maclaurin formula you find that \[ \huge e^{\int_1^{1992} (\log(3x+2) - \log(3x+1))dx + \log(5/4)} = 13\] The answer is 12 though.
\[ \huge \lfloor e^{\int_1^{1992} (\log(3x+2) - \log(3x+1))dx + \log(5/4)}\rfloor = 13\]
http://www.wolframalpha.com/input/?i=Floor%5BE%5E%28Integrate%5BLog%5B3x%2B2%5D-Log%5B3x%2B1%5D%2C%7Bx%2C+1%2C+1992%7D%5D+%2B+Log%5B5%2F4%5D+%29%5D

Not the answer you are looking for?

Search for more explanations.

Ask your own question