Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

nah I was born is 15 BC

lol okay i got a math contest question published in 1992

Then post it !

\[\text{Find the largest integer,\not exceeding}\huge \prod_{n=1}^{1992}\frac{ 3n+2 }{ 3n+1 }\]

my bad ..The pattern didnt help

so we have \[\frac{ 5 }{ 4 }\frac{ 8 }{ 7 }\frac{ 11 }{ 10 }...\frac{ 3(1992) +2}{3(1992)+1 }\]

i wonder if this cud help\[\huge \frac{ a_1+a_2+a_3...+a_n }{ n }\le \sqrt[n]{a_1a_2a_3...a_n}\]

\[ \huge \lfloor e^{\int_1^{1992} (\log(3x+2) - \log(3x+1))dx + \log(5/4)}\rfloor = 13\]