Find the function f(x) satisfying the given conditions. (HINT: You are finding the value of C)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the function f(x) satisfying the given conditions. (HINT: You are finding the value of C)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Find \[\int\limits_{}^{}f'(x) dx=f(x)+C, \text{ where } (f)'=f'\]
Or evaluate

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Integrate the function given to get from f' to f.
Don't forget when you integrate, put +C.
can u explain? :/
\[\int\limits_{}^{}f'(x) dx=\int\limits_{}^{}(4x^2-1) dx\] You may find it easy to use the following: \[\int\limits_{}^{}x^n dx =\frac{x^{n+1}}{n+1}+C, n \neq -1\] This is because \[(\frac{x^{n+1}}{n+1})'=(n+1) \cdot \frac{x^{n+1-1}}{n+1}=x^{n+1-1}=x^n\] And you may also want to use \[\int\limits_{}^{}k dx=kx+C \text{ where} K, C \text{ are a constant} \]
This is because (kx+C)'=(kx)'+(C)'=k(x)'+0+k(x)'=k(1)=k
okay thanks
Are you familiar with the idea of `Integration` yet? Or has it only been introduced to you as the process of finding the `anti-derivative` so far?
no i'm not familiar
@Best_Mathematician can u help?
|dw:1367625325100:dw|
so, when you have f' (4x^2 +1) take integral to get back the original function. . when take integral, the solution for that method always a family solution. in case they give you the special solution, that means they want you to pick out just special C in set of family solution . take integral of f' you have f(x) = 4x^3/3 -x +C and when they give you f(0) =2 just plug 0 into the function you' ve just got. to find C f(0) = 4 *0^3/3 -0 +C = 2 ---> C =2 that's it
ohhh okay
sorry , one more step. plug C back to f(x) = 4x^3/3 - x +2
I 'm supper dummy at teaching, hope you can understand what i mean
so plugging 2 back into f(x) = 4x^3/3 - x + 2 right?
yep
okay
i got 32/3 or 10.6666
hey, you misunderstand the concept, they ask you to find out C, and you got C =2 that's it. just plug C =2 into the function, nothing to do more.
ohh okay my bad

Not the answer you are looking for?

Search for more explanations.

Ask your own question