A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing

This Question is Closed

Dodo1
 one year ago
Best ResponseYou've already chosen the best response.0\[\lim_{x \rightarrow 0^+} (x^2+x)^x\]

SithsAndGiggles
 one year ago
Best ResponseYou've already chosen the best response.0I'm going to use this notation: \(e^{f(x)}=\exp{\big(f(x)\big)}\). \[\lim_{x\to0^+}\left(x^2+x\right)^x\\ \exp\bigg(\ln\bigg(\lim_{x\to0^+}\left(x^2+x\right)^x\bigg)\bigg)\] Since \(\ln x\) is continuous for \(x>0\), you have this equal to \[\exp\bigg(\lim_{x\to0^+}\ln\left(x^2+x\right)^x\bigg)\\ \exp\bigg(\lim_{x\to0^+}x\ln\left(x^2+x\right)\bigg)\] Let's look at the limit itself: \[\lim_{x\to0^+}x\ln\left(x^2+x\right)=0\cdot(\infty)\] which is an indeterminate form. Rewriting a bit, you have \[\lim_{x\to0^+}\dfrac{\ln\left(x^2+x\right)}{\frac{1}{x}}=\frac{\infty}{\infty}\] Another indeterminate form, but the kind you want. Apply L'Hopital's rule.

SithsAndGiggles
 one year ago
Best ResponseYou've already chosen the best response.0Once you figure out this limit, keep in mind that you have (as your answer) \(e^{\text{limit}}\).

robtobey
 one year ago
Best ResponseYou've already chosen the best response.0A solution using Mathematica is attached.
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.