anonymous
  • anonymous
lim t - 0 (t(1-cos(t))/(t -sin(t)) use using the lhoptialrule
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
*** I am assuming that by (cos 2x - 1) you mean [cos(2x) - 1] . It's an indeterminate form 0/0 , so you can use L'Hopital's rule (differentiate numerator and denominator separately). [ cos(2x) - 1 ] / [ 1 - cos(3x) ] lim x -> 0 = [ - 2sin(2x) ] / 3sin(3x) lim x -> 0 That is also an indeterminate form 0/0 , so apply L'Hopital's rule again : = [ - 4cos(2x) ] / 9cos(3x) lim x -> 0 = (- 4 / 9) ------- Here's a zoomed-in portion of the graph of f(x) = [ cos(2x) - 1 ] / [ 1 - cos(3x) ] You can see the graph passing through the point ( 0 , -4/9 )
anonymous
  • anonymous
were did 3x come from
anonymous
  • anonymous
and 2x??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@morganKING i am getting -1 for the limit of this one, but when i graph i am getting f(t)=3, as t approaches 0
myininaya
  • myininaya
Are you having trouble finding the derivative? That is the only scenario I can see here since it tells you to use lhospital.
myininaya
  • myininaya
let f(t)=t(1-cos(t)) and g(t)=t-sin(t) f(0)=0 and g(0)=0 since we have 0/0 we can use l'hopital rule (i think it is much easier to multiply the bottom by 1+sin(t) by whateves; it doesn't say to do that) Do limt->0 (f'/g') since we have f/g=0/0
anonymous
  • anonymous
is the answer 1?
myininaya
  • myininaya
Not for your problem you asked about.
anonymous
  • anonymous
yeah the derivative confused me @myininaya but not sure
anonymous
  • anonymous
aw k gona try again
myininaya
  • myininaya
let f(t)=t(1-cos(t)) and g(t)=t-sin(t) ----Recall this above--- f(t)=t-tcos(t) f'(t)=(t-tcos(t))'=(t)'-(tcos(t))' Derivative of t is easy For finding the derivative of tcos(t) you need the product rule. g'(t) is a bit easier to find.
anonymous
  • anonymous
ZZZ dont get this keep on getting 0/0
myininaya
  • myininaya
You should not getting 0/0 after differentiating three times.

Looking for something else?

Not the answer you are looking for? Search for more explanations.