anonymous
  • anonymous
pls help trignometry question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
UnkleRhaukus
  • UnkleRhaukus
which one?
anonymous
  • anonymous
all of them @UnkleRhaukus just want to check if the answer is right or not

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
A and D are correct
.Sam.
  • .Sam.
\[ \lim_{x\to \pi ^-}( \cot x) =-\infty \]
anonymous
  • anonymous
my bad thought it was tanx not cotx
.Sam.
  • .Sam.
For D
1 Attachment
.Sam.
  • .Sam.
All good except E
anonymous
  • anonymous
@.Sam. SO A and D are right what about b and c and e
.Sam.
  • .Sam.
\[ \lim_{x\to \left(\frac{\pi }{2}\right)^+} ( \tan x) =-\infty\]
.Sam.
  • .Sam.
1 Attachment
anonymous
  • anonymous
So @.Sam. which all have i done right
.Sam.
  • .Sam.
All good except for E
anonymous
  • anonymous
So how do we have to do e
UnkleRhaukus
  • UnkleRhaukus
@u0860867 i think you found \[\lim_{x\to\pi/2^-}\tan x=\infty\] but the question is \[\lim_{x\to\pi/2^+}\tan x\]
anonymous
  • anonymous
E asks is the limit approaching from the right of pi/2
.Sam.
  • .Sam.
Yeah exactly unkle, we got the vertical asymptote at 3pi/2, So as x approaches pi/2, with asymptote at 3pi/2 you will get -infinity because its at the left side of the asymtotes
.Sam.
  • .Sam.
Picture
1 Attachment
anonymous
  • anonymous
so i just ned to put a negative sign infront of my answer
.Sam.
  • .Sam.
Yes
anonymous
  • anonymous
thanks @.Sam. and @UnkleRhaukus , @Euler271

Looking for something else?

Not the answer you are looking for? Search for more explanations.