At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

|dw:1367800601926:dw|

|dw:1367800740264:dw|

those two integrals are the same

you might want to look at your parametric equations again

neither are correct

"circle with radius 3"

The first one is from \[\pi\] to 0, I mean.

ok

Those work, then?

And so they're the same?

What is your force field \(F\)?

\[W=\int\limits_{a}^{b}F(c(t))\cdot c'(t) dt\]

\(c(t)\) is the particular path

To continue the problem I'm given,\[F(x,y)=(2y+x^2)i + (x^2 - 2x)j\]

yielding...
\[W=-\int _0 ^\pi ((6sin(t)+9cos(t))(-3sint)+(9cos^2(t)-6cos(t))(3cos(t)))dt\]

np

Take care!