anonymous
  • anonymous
Allie currently has an account balance of $2,265.96. She opened the account 13 years ago with a deposit of $1,227.43. If the interest compounds daily, what is the interest rate on the account?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Hunus
  • Hunus
The formula for compounded interest is \[A=P(1+\frac{r}{n})^{nt}\] Where n is the number of times per year it is compounded So the equation you will need to use is \[A=P(1+\frac{r}{365})^{365t}\]
anonymous
  • anonymous
i got 1.9%
Hunus
  • Hunus
I got something different. Will you show me your steps?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i got 4.7%
anonymous
  • anonymous
2265.96(1+r/365)365*12
anonymous
  • anonymous
...........
Hunus
  • Hunus
Okay is it 12 or 13 years?
anonymous
  • anonymous
no
anonymous
  • anonymous
intrest rate
Hunus
  • Hunus
no? In your question you put 13 in your step you put 12
Hunus
  • Hunus
I know. But I need to know if t = 12 or t = 13
anonymous
  • anonymous
whats r
Hunus
  • Hunus
\[2265.96=1227.43(1+\frac{r}{365})^{365*13}\] \[\frac{2265.96}{1227.43}=(1+\frac{r}{365})^{365*13}\] \[\log(1.8461)=\log((1+\frac{r}{365})^{365*13})\] \[\log(1.8461)=365*13*\log((1+\frac{r}{365}))\] \[\frac{\log(1.8461)}{365*13}=1.000129=\log(1+\frac{r}{365})\] \[10^{1.000129}=1+\frac{r}{365}\] \[10^{1.000129}-1=0.000129=\frac{r}{365}\] \[r=0000129*365=0.0471\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.