anonymous
  • anonymous
Is this a parabola, hyperbola, ellipse, or circle? a.) y^2 + 2x^2 - 10 = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
please help!!!
zepdrix
  • zepdrix
Do you remember what the `standard form` for each parabola, hyperbola, ellipse and circle look like? :) We'll want to take this function and put it into one of those standard forms so we can easily identify which one it is.
zepdrix
  • zepdrix
\[\large y^2+2x^2-10 = 0\]Adding 10 to both sides gives us,\[\large y^2+2x^2=10\]Divide both sides by 2,\[\large \frac{y^2}{2}+x^2=5\] Hmm let's write it like this, and see if it looks familiar.\[\large \frac{y^2}{2}+\frac{x^2}{1}=5\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
is it an ellipse?
zepdrix
  • zepdrix
Ah yes it is! I should have gone one more step to make the right side 1, my mistake.\[\large \frac{y^2}{10}+\frac{x^2}{5}=1\] But yes, very good, ellipse. :)
anonymous
  • anonymous
thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.