ParthKohli
  • ParthKohli
If\[x = \dfrac{4ab}{a + b}\]Then prove that\[\dfrac{x + 2a}{x - 2a} + \dfrac{x + 2b}{x - 2b} = 2\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
@UnkleRhaukus
ParthKohli
  • ParthKohli
I can't believe I'm finding 9th grade so hard. :'-|
ParthKohli
  • ParthKohli
Ahahahahaha well! I got it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
lol
UnkleRhaukus
  • UnkleRhaukus
how?
ParthKohli
  • ParthKohli
Do you want to know my proof?
UnkleRhaukus
  • UnkleRhaukus
is it elegant?
ParthKohli
  • ParthKohli
\[x = \dfrac{4ab}{a+b} \qquad \Rightarrow \qquad \dfrac{x}{2a}=\dfrac{2ab}{a+b} ~~\text{and} ~~ \dfrac{x}{2b} = \dfrac{2a}{a+b}\]I don't know, it may be elegant.
UnkleRhaukus
  • UnkleRhaukus
i see what your doing there...
ParthKohli
  • ParthKohli
OK, let me continue.\[\dfrac{x + 2a}{x - 2a} = \dfrac{2b + a + b}{2b - a - b}\]and\[\dfrac{x + 2b}{x-2b} = \dfrac{2a + a + b}{2a - a - b}\]by componendo and dividendo property
ParthKohli
  • ParthKohli
Oh, and in my earlier post, I meant to write\[\dfrac{x}{2a} = \dfrac{2b}{a+b}\]
ParthKohli
  • ParthKohli
Simplifying, we get\[\dfrac{x + 2a}{x - 2a} = \dfrac{3b+a}{b-a}\]and\[\dfrac{x + 2b}{x-2b} =\dfrac{3a+b}{a - b}\]
ParthKohli
  • ParthKohli
So now we can add both equations
ParthKohli
  • ParthKohli
\[\begin{aligned}\dfrac{x + 2a}{x - 2a} + \dfrac{x+2b}{x-2b} &=\dfrac{3b+a}{b-a} + \dfrac{3a+b}{a-b} \\ \\ \\ & = \dfrac{-3b-a+3a+b}{a-b} \\ \\ \\ &= \dfrac{2a-2b}{a-b} \\ \\ \\ & = 2\end{aligned} \]
ParthKohli
  • ParthKohli
Phew. QED
UnkleRhaukus
  • UnkleRhaukus
this is 9th grade?
ParthKohli
  • ParthKohli
Yeah.
ParthKohli
  • ParthKohli
No wait, this is 8th grade. I was just reviewing stuff.

Looking for something else?

Not the answer you are looking for? Search for more explanations.