Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

If\[x = \dfrac{4ab}{a + b}\]Then prove that\[\dfrac{x + 2a}{x - 2a} + \dfrac{x + 2b}{x - 2b} = 2\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

I can't believe I'm finding 9th grade so hard. :'-|
Ahahahahaha well! I got it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

lol
how?
Do you want to know my proof?
is it elegant?
\[x = \dfrac{4ab}{a+b} \qquad \Rightarrow \qquad \dfrac{x}{2a}=\dfrac{2ab}{a+b} ~~\text{and} ~~ \dfrac{x}{2b} = \dfrac{2a}{a+b}\]I don't know, it may be elegant.
i see what your doing there...
OK, let me continue.\[\dfrac{x + 2a}{x - 2a} = \dfrac{2b + a + b}{2b - a - b}\]and\[\dfrac{x + 2b}{x-2b} = \dfrac{2a + a + b}{2a - a - b}\]by componendo and dividendo property
Oh, and in my earlier post, I meant to write\[\dfrac{x}{2a} = \dfrac{2b}{a+b}\]
Simplifying, we get\[\dfrac{x + 2a}{x - 2a} = \dfrac{3b+a}{b-a}\]and\[\dfrac{x + 2b}{x-2b} =\dfrac{3a+b}{a - b}\]
So now we can add both equations
\[\begin{aligned}\dfrac{x + 2a}{x - 2a} + \dfrac{x+2b}{x-2b} &=\dfrac{3b+a}{b-a} + \dfrac{3a+b}{a-b} \\ \\ \\ & = \dfrac{-3b-a+3a+b}{a-b} \\ \\ \\ &= \dfrac{2a-2b}{a-b} \\ \\ \\ & = 2\end{aligned} \]
Phew. QED
this is 9th grade?
Yeah.
No wait, this is 8th grade. I was just reviewing stuff.

Not the answer you are looking for?

Search for more explanations.

Ask your own question