A community for students. Sign up today!
Here's the question you clicked on:
 0 viewing
 one year ago
A hockey puck slides off the edge of a table with an initial velocity of 20.0 m/s. The height of the table above the ground is 2.0m. What is the magnitude of the velocity of the puck just before it touches the ground? I know the answer is 21m/s but can you show me how?
 one year ago
A hockey puck slides off the edge of a table with an initial velocity of 20.0 m/s. The height of the table above the ground is 2.0m. What is the magnitude of the velocity of the puck just before it touches the ground? I know the answer is 21m/s but can you show me how?

This Question is Open

BTaylor
 one year ago
Best ResponseYou've already chosen the best response.1Kinematics shows us that the horizontal and vertical components of the motion are separable. The horizontal velocity (in this case, 20.0 m/s) is constant. The vertical velocity changes because of gravity's acceleration. The vertical velocity can be found with this equation (only because the initial vertical velocity is zero):\[v_f = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 2} \approx 6.2\]Now that we know the vertical and horizontal components, we can find the resultant velocity: dw:1368495720450:dw Using Pythagorean's theorem: \[v_f = \sqrt{v_x^2 + v_y^2} = \sqrt{20^2 + 6.2^2} \approx 20.94\] So your answer is 20.94 m/s, which does indeed round to 21 m/s.

abruno
 one year ago
Best ResponseYou've already chosen the best response.0You are awesome! Thanks!
Ask your own question
Ask a QuestionFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.