ParthKohli
  • ParthKohli
OK, here's a nice question that I was just checking out. Try it :-D A particle is at rest and starts to move at a constant acceleration \(\alpha\). After some time, it starts decelerating at \(\beta\) and returns to rest. Given that the particle takes time \(T\) to do so, find in the terms of the known: 1: The highest velocity. 2: The average velocity.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
@.Sam.
anonymous
  • anonymous
The highest velocity.
ParthKohli
  • ParthKohli
Note that the known are \(\alpha, \beta, T\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
|dw:1368898722315:dw|
ParthKohli
  • ParthKohli
It's a particle, not a cube :-P
.Sam.
  • .Sam.
Is the whole journey takes time T?
ParthKohli
  • ParthKohli
yes.
.Sam.
  • .Sam.
|dw:1368898894389:dw|
.Sam.
  • .Sam.
\[\alpha=\frac{v_1-0}{t_1} \] Highest velocity is \(v_1\) \[v_1=\alpha t_1\]
.Sam.
  • .Sam.
\[-\beta=\frac{v_2-v_1}{t_2}\] and also \[T=t_1+t_2\]
ParthKohli
  • ParthKohli
Good going.
.Sam.
  • .Sam.
Average velocity will be just \[\frac{v_1+v_2}{2}?\]
ParthKohli
  • ParthKohli
Careful: you don't know the average acceleration as yet.
.Sam.
  • .Sam.
\[a_{ave}=\frac{v_2-v_1}{t_2-t_1}\]
ParthKohli
  • ParthKohli
Actually, the average acceleration for the whole thing is \(0\).
.Sam.
  • .Sam.
Hmm, lol, but it didn't say it stops at the end and usually when its average acceleration \(\alpha=\beta\)
ParthKohli
  • ParthKohli
Oh, my bad. It does stop at the end.
.Sam.
  • .Sam.
Hmm \[v_2=0\]
ParthKohli
  • ParthKohli
What is \(v_1\)? The maximum velocity or the start velocity?
.Sam.
  • .Sam.
The diagram said it's maximum velocity
ParthKohli
  • ParthKohli
OK. I got confused when you said v1 = v2
.Sam.
  • .Sam.
Nah
.Sam.
  • .Sam.
So we'll mix them up \[v_1=\alpha t_1 ~~~~~~ -\beta t_2=-v_1 \] Getting \[\beta t_2= \alpha t_1\]
ParthKohli
  • ParthKohli
You just eliminated \(v_1\) when you actually need it.
.Sam.
  • .Sam.
Right, \[v_1=\frac{\alpha(T-t_2)}{\beta}\]
ParthKohli
  • ParthKohli
But \(t_2\) is not a known thing. You defined it. Express in terms of alpha, beta and T.
.Sam.
  • .Sam.
What about the distance?
.Sam.
  • .Sam.
/displacement
ParthKohli
  • ParthKohli
You have to calculate that. Both 1 and 2 are to be given in terms of alpha, beta and T.
ParthKohli
  • ParthKohli
Do you want to try more?
.Sam.
  • .Sam.
I'm getting more variables, lol
.Sam.
  • .Sam.
But it would've been easier if we used calculus method
ParthKohli
  • ParthKohli
OK, so like \(v_1 = \alpha t_1 \Rightarrow t_1 = \dfrac{v_1}{\alpha}\). Similarly \(0 = v_1 - \beta t_2 \Rightarrow t_2 = \dfrac{v_1}{\beta}\). Now\[T = t_1 + t_2 = \frac{v_1}{\alpha} + \frac{v_1}{\beta}\]Solving for \(v_1 \), we get \(v_1 = \dfrac{\alpha\beta T}{\alpha + \beta }\)
.Sam.
  • .Sam.
Aw man it was getting close :P
ParthKohli
  • ParthKohli
:-D
ParthKohli
  • ParthKohli
Try the 2nd one maybe?
.Sam.
  • .Sam.
Average velocity for the whole journey is it?
ParthKohli
  • ParthKohli
Yeah.
.Sam.
  • .Sam.
is it zero
ParthKohli
  • ParthKohli
No, because the displacement isn't zero.
.Sam.
  • .Sam.
But the initial and final velocities are zero
ParthKohli
  • ParthKohli
I have not asked for the average acceleration.
ParthKohli
  • ParthKohli
:-P
ParthKohli
  • ParthKohli
\[\overline{v} = \dfrac{\Delta s}{\Delta t}\]
.Sam.
  • .Sam.
I've got \[\frac{x_2}{x_3-x_2}=\frac{\beta}{\alpha}=\frac{t_1}{t_2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.