Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

(sinA+cosAtanB)/(cosA-sinAtanB)=tan(a+b)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Multiply with cos B on numerator and denominator.
explain?
you will se that you get something similar to previous question

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(sinA+cosAtanB) X cos B ________________________ (cosA-sinAtanB) X cos B
Try opening up the brackets .
ok, so you get this: \[(sinAcosB+cosAcosBtanB)/(cosAcosB-sinAcosBtanB)\] so what next?
tan B X cos B = ?
?
\[\tan B \times \cos B= .....\] Can you find that ?
ummmm no, i suck at harder trig
Hint: tan B = sinB / cosB
^^
yes and that doesnt equal tan(a+b)
it equals sinB
Simplify it first :) No need to be hurry :)
yep replace it in your question
replace what though
(sinA+cosAtanB) X cos B = sin A cos B+cos A sin B !
Seen that somewhere?
yes
Can you do it now ?
ummm give me a minute
i think so
what happens to the denominator?
Open up the brackets !
(cosA-sinAtanB) X cos B=.........
thanks man, solved :)
Great ! yw :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question