At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

First, do you know the method to find the slope of a perpendicular line?

y=mx+b?

|dw:1369021818640:dw|

|dw:1369021841094:dw|

|dw:1369021901093:dw|

Oh ok i always get those two confused.

if slope of ur given line is \[m _{1}\]

So, what would the slope of the perpendicular line be in this case?

then \[m _{1}=\frac{ 3 }{ 4 }\]

if the slope of a perpendicular line is \[m _{2}\]

Ok is the equation to find out what the perpendicular line y=mx+b or m=y^2 - y^1 / x^2-x^1?

then\[m _{1}m _{2}=-1\]

or\[\frac{ 3 }{ 4 }m _{2}=-1\]

The negative opposite?

\[m _{2}=\frac{ -4 }{ 3 }\]

Alright, so in order to find the slope we use y=mx+b right?

Yes, i see. So next up would be to use the y^2-y^1 equation?

Yes.

So in this case (3,5) would be (x^1,y^1) while −4/3 would be (x^2,y^2)?

No, -4/3 is m. You just need that and one point.

\(y-y_1=m(x-x_1)\)

y-5 = -4/3(x-3) is that right so far?

Yes!

And that would be the final answer correct?