AonZ
  • AonZ
Prove cosec4A + cot4A = 1/2 (cotA- tanA) Any way of doing this easily? like with minimum working out? @jim_thompson5910 cause i get stuck with a massive page of working out
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

AonZ
  • AonZ
Prove cosec4A + cot4A = 1/2 (cotA- tanA) Any way of doing this easily? like with minimum working out? @jim_thompson5910 cause i get stuck with a massive page of working out
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
How about using these first: \[cosec(4A) = \frac{1}{\sin(4A)}\] \[\cot(4A) = \frac{\cos(4A)}{\sin(4A)}\]
anonymous
  • anonymous
So LHS becomes : \[LHS \implies \frac{1 + \cos(4A)}{\sin(4A)}\]
AonZ
  • AonZ
yea i got that too... then i prob stuffed up somewhere...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Got it..
anonymous
  • anonymous
You want to just remember these formulas here: \[\tan^2(u) = \frac{1 - \cos(2u)}{1 + \cos(2u)}\] \[\tan(2u) = \frac{2\tan(u)}{1 - \tan^2(u)}\]
anonymous
  • anonymous
So in the numerator above there is one 1+ cos(4A) is there but we need there one (1-cos(4A), so that we can apply the formula 1 there...
anonymous
  • anonymous
By using identity \(sin^2(x) + cos^2(x) = 1\) : Sin(4A) can be written as: \[\sin(4A) = \sqrt{1 - \cos^2(4A)} \implies \sqrt{1 - \cos(4A)} \cdot \sqrt{1 +\cos(4A)}\]
AonZ
  • AonZ
never seen this before :P \[\huge\tan^2(u) = \frac{1 - \cos(2u)}{1 + \cos(2u)}\]
anonymous
  • anonymous
I too... :P
anonymous
  • anonymous
anonymous
  • anonymous
So, moving forward: \[\frac{1 + \cos(4A)}{\sqrt{1 + \cos(4A)} \sqrt{1 - \cos(4A)}} \implies \frac{\sqrt{1 + \cos(4A)}}{{\sqrt{1 - \cos(4A)}}}\]
anonymous
  • anonymous
Now just take reciprocal, you will get the same form: \[\huge \frac{1}{\frac{\sqrt{1 - \cos(4A)}}{\sqrt{1 + \cos(4A)}}}\]
anonymous
  • anonymous
Now use the 1 formula: \[\implies \frac{1}{\sqrt{\tan^2(2A)}} \implies \frac{1}{\tan(2A)}\]
anonymous
  • anonymous
Use the second formula here and you will get your answer...
anonymous
  • anonymous
Oh, I forget, you need verification of that formula???
AonZ
  • AonZ
yea :P
anonymous
  • anonymous
You know this?? \[\sin^2(u) = \frac{1 - \cos(2u)}{2}\] \[\cos^2(u) = \frac{1 + \cos(2u)}{2}\] Now don't say you have not seen them too.. :(
AonZ
  • AonZ
yes
AonZ
  • AonZ
i know them :)
anonymous
  • anonymous
Just divide them.. :)
anonymous
  • anonymous
You will get formula for \(tan^2(u)\).
anonymous
  • anonymous
\[\huge \frac{\sin^2(u)}{\cos^2(u)} = \frac{\frac{1 - \cos(2u)}{2}}{\frac{1 + \cos(2u)}{2}}\] \[\tan^2(u) = \frac{1- \cos(2u)}{1 + \cos(2u)}\]
anonymous
  • anonymous
Now I think you can prove it.. Go ahead..
AonZ
  • AonZ
ahh yes i can :) thank you :)
anonymous
  • anonymous
You are welcome dear..

Looking for something else?

Not the answer you are looking for? Search for more explanations.