DLS
  • DLS
Limits question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DLS
  • DLS
\[\LARGE \lim_{x \rightarrow 0} (\frac{e^x+e^{-x}-2}{x^2})^\frac{1}{x^2}\]
DLS
  • DLS
@Callisto @satellite73
DLS
  • DLS
Summon @ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
(Just that you don't get in hopes: I'm just trying out. @Callisto please feel free to post your answer!)
DLS
  • DLS
I THOUGHT U CRACKED IT >.<
Callisto
  • Callisto
Questions from you guys are nightmare for me!
DLS
  • DLS
Summon @terenzreignz
terenzreignz
  • terenzreignz
Agree with @Callisto but let's see how this plays out :)
DLS
  • DLS
\[\LARGE e^{ (\frac{e^x+e^{-x}-2-x^2}{x^2})\frac{1}{x^2}}\] this should be it,I just need to find the limit of this thing,hmm..
DLS
  • DLS
the power gives 1/12 hence e^(1/12) is the answer.
terenzreignz
  • terenzreignz
Isn't this pretty straightforward as far as L'Hôpital stuff is concerned?
DLS
  • DLS
\[\large { (\frac{1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+1-x+\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24}+-2-x^2}{x^2})\frac{1}{x^2}}\] =112
DLS
  • DLS
i mean 1/12*
DLS
  • DLS
sorry i don't know why i posted such a simple ques :P maybe m sleepy .-.
DLS
  • DLS
just stuck me now
terenzreignz
  • terenzreignz
I didn't say simple, I said straightforward :D \[\Large 1^\infty\] So... suppose... \[\Large L = \lim_{x\rightarrow 0}\left(\frac{e^x +e^{-x}-2}{x^2}\right)^{\frac1{x^2}}\]
DLS
  • DLS
I said simple because of my own conscience :P
terenzreignz
  • terenzreignz
Then... \[\Large \ln(L) = \ln \lim_{x\rightarrow 0}\left(\frac{e^x +e^{-x}-2}{x^2}\right)^{\frac1{x^2}}\] Since Logarithms are continuous, they may enter the limit... \[\Large \ln(L) = \lim_{x\rightarrow 0} \ \ln\left(\frac{e^x +e^{-x}-2}{x^2}\right)^{\frac1{x^2}}\] \[\Large \ln(L) = \lim_{x\rightarrow 0}\frac1{x^2}\cdot \ln\left(\frac{e^x +e^{-x}-2}{x^2}\right)\]
terenzreignz
  • terenzreignz
\[\Large \lim_{x\rightarrow 0}\frac1{x^2}\cdot \ln\left(\frac{e^x +e^{-x}-2}{x^2}\right) =\lim_{x\rightarrow 0} \frac{\ln\left(\frac{e^x +e^{-x}-2}{x^2}\right) }{x^2}\] And now we have an indeterminate form \(\large\frac00\)
DLS
  • DLS
LH twice? D:
DLS
  • DLS
hmm possibleway
terenzreignz
  • terenzreignz
Yup :) Differentiating the numerator and denominator... (bloody hell, this'll be a mouthful :D ) \[\Large \lim_{x\rightarrow 0} \frac{\ln\left(\frac{e^x +e^{-x}-2}{x^2}\right) }{x^2}=\lim_{x\rightarrow0}\frac{\left(\frac{x^2}{e^x+e^{-x}-2}\right)\left(\frac{x^2(e^x-e^{-x})-2x(e^x+e^{-x}-2)}{x^4}\right)}{2x}\]
terenzreignz
  • terenzreignz
\[\Large \lim_{x\rightarrow 0} \frac{\ln\left(\frac{e^x +e^{-x}-2}{x^2}\right) }{x^2}=\lim_{x\rightarrow0}\frac{\left(\frac{x^2}{e^x+e^{-x}-2}\right)\left(\frac{x^2(e^x-e^{-x})-2x(e^x+e^{-x}-2)}{x^4}\right)}{2x}\]
DLS
  • DLS
lol
terenzreignz
  • terenzreignz
It keeps getting cropped >.> \[\large \lim_{x\rightarrow 0} \frac{\ln\left(\frac{e^x +e^{-x}-2}{x^2}\right) }{x^2}=\lim_{x\rightarrow0}\frac{\left(\frac{x^2}{e^x+e^{-x}-2}\right)\left(\frac{x^2(e^x-e^{-x})-2x(e^x+e^{-x}-2)}{x^4}\right)}{2x}\]
DLS
  • DLS
lengthy \\m// my method was better! :O
terenzreignz
  • terenzreignz
What was your method? I didn't catch it :D
DLS
  • DLS
expansions..
terenzreignz
  • terenzreignz
Series?
DLS
  • DLS
yes
terenzreignz
  • terenzreignz
Count me out of that one :P
DLS
  • DLS
hmm :P it was a single line solution with expansions,LH is deadly dangerous here.
terenzreignz
  • terenzreignz
That is true... unfortunately, I'm not well-versed with series... I don't like series, series don't like me :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.