anonymous
  • anonymous
Algebra help pleasee
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
dumbcow
  • dumbcow
the square root is same as exponent of (1/2) ... so divide the exponent in half to nearest integer , then leave the remainder inside square root \[\sqrt{x^{7}} = x^{7/2} = x^{3} x^{1/2} = x^{3} \sqrt{x}\]
Jhannybean
  • Jhannybean
\[\frac{ 7q^4 }{{\sqrt{q ^{15}}} }\] so now we're focusing on just q.\[\frac{ q^4 }{ q ^{\frac{ 15 }{ 2 }} }\]So now we have \[q ^{(15/2)-4}= q ^{(15/2)-(8/2)}= q ^{7/2}\] wecan also rewrite q under a radical. \[\sqrt{q ^{7}}\] putting it altogether, we would have \[\frac{ 7 }{ \sqrt{q ^{7}}}\] or you can write this as \[\frac{ 7 }{ q ^{7/2} }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
Hope that's not too complicated! :(
dumbcow
  • dumbcow
never leave a square root in denominator either... \[\frac{1}{\sqrt{x}}*\frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{x}\]
anonymous
  • anonymous
Im confused... Lol. This whole thing is confusing. I am just trying to finish up this last question. /:
Jhannybean
  • Jhannybean
What part is confusing?
Jhannybean
  • Jhannybean
Oh, in correlation to what @dumbcow was referring to, \[\frac{ 7 }{ \sqrt{q ^{7}} }*\frac{ \sqrt{q ^{7}} }{ \sqrt{q ^{7}} }=\frac{ 7\sqrt{q ^{7}} }{ q ^{7} }\] As he said,you can't have a radical in the denominator.
anonymous
  • anonymous
\[\frac{ 7q ^{4} }{ \sqrt{q ^{8}}*\sqrt{q ^{7}} }\] = \[\frac{ 7 }{ \sqrt{q ^{7}} }= \frac{ 7 }{ q ^{3}*\sqrt{q} }\] \[ans*\frac{ \sqrt{q} }{ \sqrt{q} }\] =\[\frac{ 7\sqrt{q} }{ q ^{3}*q }=\frac{ 7\sqrt{q} }{ q ^{4} }\]
anonymous
  • anonymous
q^4 = sqrt(q*8)

Looking for something else?

Not the answer you are looking for? Search for more explanations.