anonymous
  • anonymous
a.) The roots of the equation ax^2 + bx + c =0 , where a belongs to real number , are two consecutive odd positive integers , then 1.) |b|<=4a 2.) |b|>=4a 3.) |b|=4a 4.) None of these Answer : 2 b.) The roots of the equation (3-x)^4 + (2-x)^4 = (5-2x)^4 are 1.) Two Real two imaginary 2.) All imaginary 3.) All Real 4.) None of these Answer : 1
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
please help someone
anonymous
  • anonymous
Do you know what the discriminant of a quadratic equation is? If your polynomial has 2 integer roots, what can you say about the discriminant?
anonymous
  • anonymous
Note, the discriminant is the part under the square root of the quadratic equation.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@joe are u talking about question no 2 or 1
anonymous
  • anonymous
For number 1.
anonymous
  • anonymous
yeah i know about the discriminant but cannot find the answer of question no 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.