Limits, Can you help me find out this specific thing I dont know how to find out http://screencast.com/t/PUvesX4N

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Limits, Can you help me find out this specific thing I dont know how to find out http://screencast.com/t/PUvesX4N

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Once you find f'(x), plug in a to get the slope of the line, m. Then you want to get it in the form y=mx+b, by using the fact it passes through the point (a, f(a))
Do you know how to take the derivative? If so, then first take the derivative of the function, then evaluate it at the given a -- this is "m", the slope of the tangent line. Now, evaluate the function at the given a. This we'll call "y1" The tangent line is: y-y1 = m (x-a)
Can please someone tell me what is a slope just so I get the bigger picture of whats going on?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Slope is the steepness of the line, or rate of change. Remember back in algebra, equations y=mx+b have a slope of m.
@BTaylor what do you mean by "Now, evaluate the function at the given a. " ?
so, for number 9, f(x) = 2x^2. The given "a" is 1. So evaluating the function at a means you plug in a for x, and get 2(1)^2, which is 2.
That means plug in x=1 (since a=1) into f = 2x^2
@agent0smith is right. To visualize this tangent line, click this link: http://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=tangent%20line%20to%202x%5E2%20at%20x%3D1
I got y1 = 0
y1 = -2
y1 = 2 :D **
the last one is right. y1 = 2.
so that's the answer?? y1 = 2 and I am done? Nothing else needed?
No... did you find the slope?
its 4
yes. because the derivative is 4x, evaluated at x=1 gives you 4(1) =4
So then put it in point-slope form: y-y1 = m (x-x1) where x1 = 1, y1= 2
yea
I did all that and I got y1 = 2 in the end, I am done ?
Wait, no, where is your x going? y-y1 = m (x-a) y - 2 = 4(x-1)
x-1 = 0
x = 1
x is x.
a is 1.
then why y is not y too and had to be replaced
y is y. y-2 = 4 (x-1)
You're using point slope form to write the equation of a line: http://www.purplemath.com/modules/strtlneq2.htm
Nice! I see now! Thank you both! I wish I could give more medals!
Your line has a slope of m=4, and passes through the point (1, 2) then you just plug it into the point slope formula.
oh i see
And again, this is what you have found: http://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=tangent%20line%20to%202x%5E2%20at%20x%3D1
yes

Not the answer you are looking for?

Search for more explanations.

Ask your own question