Christos
  • Christos
Logarithmic differantiation, http://screencast.com/t/fwBW2D9z9E Can you help me out on this please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
reemii
  • reemii
when there is an \(x\) in the exponent and want to compute a limit or a derivative, always resort to this technique: \[ a^{h(x)} = e^{\ln a^{h(x)}} = e^{h(x) \ln a} \] from here you should be able to do something.
Christos
  • Christos
were you able to do it??
reemii
  • reemii
do you know the "more simple" formula: \((a^x)' = a^x \ln a\) ? (\(a>0\)) knowing this you don't need the above trick. (you have to know the derivation of a compound function formula)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
Let y=f(x) \[\Large y=\pi^{sinx}\] ln both sides \[\ln(y)=\sin(x)\ln(\pi)\] Differentiate each term \[\frac{1}{y}y'=\ln(\pi)\cos(x) \\ \\ y'=yln(\pi)\cos(x) \\ \\ y'=\pi^{sinx}\ln(\pi)\cos(x)\] Got it?
Christos
  • Christos
If that's it yea easy enough
reemii
  • reemii
("always" means that it works, but there can be simpler ways depending on the problem) \[ (\pi^{\sin x})' = (\pi^{\sin x} \ln \pi) (\sin x)' = (\pi^{\sin x} \ln \pi) (\cos x) \] (derivation by parts.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.