Christos
  • Christos
Logarithmic differantiation, y = (x^3 -2x)^ln(x) I got a very long result I dont know if my solution is correct
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Christos
  • Christos
y'=(x^3 - 2x)^ln(x)lnx^3-2x+lnx*(2x-2)/(x^3-2x)
Christos
  • Christos
I forgot an 1/x next to (x^3 - 2x)
Christos
  • Christos
multiplication

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
I got\[\Large y'=[\frac{(3x^2-2)\ln(x)}{x^3-2x}+\frac{\ln(x^3-2x)}{x}](x^3-2x)^{\ln(x)}\]
Christos
  • Christos
hm
reemii
  • reemii
only thing to correct in your answer: it's \(3x^2-2\) instead of \(2x-2\), and you forgot some parentheses.
Christos
  • Christos
Yea I just noticed that error, and the parenthesis I know, I just surpassed them. Other than that all ok ??
reemii
  • reemii
yes
.Sam.
  • .Sam.
Yeah \[y=(x^3-2x)^{\ln(x)} \\ \\ \ln(y)=\ln(x^3-2x)^{\ln(x)} \\ \\ \ln(y)=\ln(x)\ln(x^3-2x)\] Implicit differentiation , and product rule + chain rule for RHS \[\frac{1}{y}y'=\ln(x)\frac{1}{x^3-2x}(3x^2-2)+\ln(x^3-2x)(\frac{1}{x})\]
Christos
  • Christos
thank you guys

Looking for something else?

Not the answer you are looking for? Search for more explanations.