A community for students.

    Here's the question you clicked on:

    55 members online
    • 0 replying
    • 0 viewing


    • 2 years ago

    Given the equation z = x^2 + y^3 + xy, find the critical points of the equation and identify wether they are mins maxes or neither. I got the points (0,0,0) neither, (-1/12, 1/6, -1/432) neither. Is this right?

    • This Question is Open
    1. AlHajri
      • 2 years ago
      Best Response
      You've already chosen the best response.
      Medals 0

      z=f(x,y) f(x,y) = x^2+y^3+xy Then find the first partial derivatives (fx) and (fy) fx= 2x+y=0 ,fy=3y^2+x=0 The critical points are (0,0) and (-1/12,1/6) Using the second derivative test (0,0) is a saddle point While (-1/12,1/6) is a minimum

    2. Not the answer you are looking for?
      Search for more explanations.

      • Attachments:

    Ask your own question

    Sign Up
    Find more explanations on OpenStudy
    Privacy Policy

    Your question is ready. Sign up for free to start getting answers.

    spraguer (Moderator)
    5 → View Detailed Profile

    is replying to Can someone tell me what button the professor is hitting...


    • Teamwork 19 Teammate
    • Problem Solving 19 Hero
    • You have blocked this person.
    • ✔ You're a fan Checking fan status...

    Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

    This is the testimonial you wrote.
    You haven't written a testimonial for Owlfred.