anonymous
  • anonymous
Who wants an easy medal!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
cos^2(theta) -1
anonymous
  • anonymous
@Zarkon
Loser66
  • Loser66
the question is unclear. and I give you medal for free. heheh, I don't know how to solve

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh thanks!
anonymous
  • anonymous
oh thanks!
Luigi0210
  • Luigi0210
Trig identities,\[\cos^2\theta-1=\sin^2\theta\]
Loser66
  • Loser66
nope
anonymous
  • anonymous
it wants me to simpify
Luigi0210
  • Luigi0210
Why not? and that is simplified
GoldPhenoix
  • GoldPhenoix
\[-\cos^2(aht^2e)\]
Luigi0210
  • Luigi0210
Oh I see my mistake.. again
Luigi0210
  • Luigi0210
yea \[-\cos^2\theta \] sorry about that :/
Loser66
  • Loser66
redo
Loser66
  • Loser66
@Luigi0210
Loser66
  • Loser66
@lala2 he gave you the formula, you replace and figure out the answer. 1= sin^2 +cos^2
anonymous
  • anonymous
what about this one sec(theta)sin(theta)cot(theta)
Luigi0210
  • Luigi0210
\[\sec \theta*\sin \theta*\cot \theta=\frac{ 1 }{ \cos \theta }*\sin \theta*\frac{ \cos \theta }{ \sin \theta }=\frac{ \sin \theta }{ \cos \theta }*\frac{ \cos \theta }{ \sin }\]
Luigi0210
  • Luigi0210
*sin(theta)

Looking for something else?

Not the answer you are looking for? Search for more explanations.