anonymous
  • anonymous
Which of the following functions is not a sinusoid? y = sin x y= Sqrtx y = cos x None of the above are sinusoids.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ghazi
  • ghazi
definitely \[\sqrt x\] is not a sinusoid , it doesn't vary as a sine wave or a cosine wave
anonymous
  • anonymous
thats what i was thinkging thanks!!
ghazi
  • ghazi
|dw:1369863782806:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
btw does a sinusoid have to go below the x axis??
ghazi
  • ghazi
no, sinusoid wave are those which show a smooth repetitive variation or oscillation , like a sine wave or a cosine wave , it doesn't have to go below x axis, if you shift the origin up with respect to the original origin you wont have it below x axis, its just a general trend
ghazi
  • ghazi
|dw:1369863941221:dw| O new is the new origin
reemii
  • reemii
I would say yes (it has to go below), since I take as definition that a sinusoid is a function of the form \(\lambda \sin(\alpha x + \phi)\), with \(\lambda, \alpha, \phi\in\mathbb R\). But you allow a vertical translation in your definition the answer is yes..
anonymous
  • anonymous
how bout this then??
1 Attachment
reemii
  • reemii
you have to find in your definition in your course. (wikipedia says that the general form allows for a vertical shift). If your definition is the general definition, then there are two sinusoid curves on this picture.
anonymous
  • anonymous
y= sqrt of x

Looking for something else?

Not the answer you are looking for? Search for more explanations.