PhoenixFire
  • PhoenixFire
Evaluate the surface integral: \[\iint _{ S }^{ }{ z } dS\] Where S is the surface \(x=y+3z^2\) for \(0\le y\le 1\) and \(0\le z\le 1\)
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

PhoenixFire
  • PhoenixFire
I'm stuck. I think I have to use the formula \[\iint _{ S }^{ }{ f(x,y,z) } dS=\iint _{ D }^{ }{ f(x,y,g(x,y)) \sqrt { { (\frac { \delta z }{ \delta x } ) }^{ 2 }+{ (\frac { \delta z }{ \delta y } ) }^{ 2 }+1 } } dA\] But I keep getting lost. Can anyone help me out?
PhoenixFire
  • PhoenixFire
Not sure if I should be able to project it onto the yz-plane and change the formula for x=g(y,z), etc. Or if I'm supposed to rearrange \(x=y+3z^2\) for z, and continue with the normal way.
Zarkon
  • Zarkon
\[\int_{ S }f(x,y,z) dS=\iint_{ D } f(g(y,z),y,z) \sqrt {\left (\frac { \partial x }{ \partial y} \right)^{ 2 }+\left(\frac { \partial x }{ \partial z } \right)^{ 2}+1}~dA\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

PhoenixFire
  • PhoenixFire
That's what I thought, but it didn't seem right. Oh well, I'll just go with it. Thanks @Zarkon
Zarkon
  • Zarkon
you can always switch the roles of x and z and then use your original formula (same thing)

Looking for something else?

Not the answer you are looking for? Search for more explanations.