anonymous
  • anonymous
I need your help, please! I'm taking this course at my university, but I don't know what should i do about this differential equation: y'=(3*e^(x+y))/(x^2+2): I solved it online, but the solution has 'Ei(x)' (The exponential integral)!
MIT 18.03SC Differential Equations
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Did you use variable separation? What is the form of the equation that needs the exponential integral?
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align}y'&=\frac{3e^{x+y}}{x^2+2}\\\frac{\mathrm dy}{\mathrm dx}&=\frac{3e^xe^y}{x^2+2}\\\frac{\mathrm dy}{e^y}&=\frac{3e^x\mathrm dx}{x^2+2}\\\int e^{-y}\mathrm dy&=3\int\frac{e^x}{x^2+2}\mathrm dx\\&=\end{align}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.