jkristia
  • jkristia
Problem 5A-3g, is the answer correct?
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jkristia
  • jkristia
I'm not able to get the same nice clean answer as in the solution, and I think the problem is a mistake in the given solution where he get \[\frac{dy}{dx} \frac{x}{\sqrt{1 - x^2}} = (1-x^2)^{-3/2} ??\] it seems like he forgot the \(x\) in the numerator I get \[=\frac{-x^2+x+1}{(1-x^2)\sqrt{1-x^2}}\] What am I missing, where is my mistake ?
anonymous
  • anonymous
First change the equation to \[\frac{ dy }{ dx}x(x-x ^{2})^{-\frac{ 1 }{ 2 }}\] Use the product rule you get \[(1)(1-x ^{2})^{-\frac{ 1 }{ 2 }}+x(-\frac{ 1 }{ 2 })(1-x ^{2})^{-\frac{3 }{ 2 }}(-2x)\] this can be simplified to \[\frac{ 1-x ^{2} }{(1-x ^{2})^{\frac{3}{2}} }+\frac{ x ^{2} }{(1-x ^{2})^{\frac{3}{2}} }\] which equals \[\frac{ 1 }{ (1-x ^{2} )^{\frac{ 3 }{ 2 }}}\] or\[(1-x ^{2})^{\frac{ -3 }{ 2 }}\]
anonymous
  • anonymous
Note that \[(1-x ^{2})^{-\frac{ 1 }{ 2 }}=\frac{ 1 }{ (1-x ^{2})^{\frac{ 1 }{ 2 }} }=\frac{ 1-x ^{2} }{ (1-x ^{2})^{ \frac{ 3 }{ 2 } }}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jkristia
  • jkristia
oh man.... you are right :). I have to go back and check my calculation, but I think my silly mistake was to multiply by (-2), not (-2x), arghhh... sometime you just go blind staring at a problem.

Looking for something else?

Not the answer you are looking for? Search for more explanations.