• anonymous
Find the tangent plane to the surface x^2+y^2+xyz=4+z^3(y-2x) at the point (1, 1, 1). So the equation of the tangent plane is z-z0=f'x(x-x0)+f'y(y-y0). I find the partials using implicit differentiation: f'x=(2x)/(3yz^2-6z^2-y) @ (1,1,1) = -1/2 f'y=(2y)/(3z^2-6xz^2-x) @ (1,1,1) = -1/2 Then the equation of the plane (ie plugging into the above equation) is z+(1/2)x+(1/2)y=2 But the answer is 5x+2y+4z=11 I have two question from here: 1, Where am I going wrong in the implicit differentiation? Wolfram gives me a different result. 2, I know using this method is incorrect. Why is that? Why must I use the gradient vector to the level surface instead of implicitly deriving?
Mathematics
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.