Jack1
  • Jack1
if i have a circle of radius 1 what are the dimensions for a square with the same area as the circle?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jack1
  • Jack1
|dw:1370173226531:dw|
anonymous
  • anonymous
Side length: \(\sqrt{\text{Area}}\)
anonymous
  • anonymous
So the square would be \(\sqrt{\pi} \times \sqrt{\pi}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jack1
  • Jack1
cool, cheers, so area = pi then?
anonymous
  • anonymous
Yes \(\pi r^2\) and the radius is 1 for the area of the circle.
Jack1
  • Jack1
sweet, so this holds true for circles of all radius sizes? (ie side legnth = sqrt pi x r)?
anonymous
  • anonymous
|dw:1370173487843:dw|
Jack1
  • Jack1
ie side legnth = ((sqrt pi) x r)?
anonymous
  • anonymous
on solving ,you will get :a=sqrt(pi)*r
Jack1
  • Jack1
sorry @Taufique ... that's kinda hard to read...?
Jack1
  • Jack1
ah, gotcha, cheers
anonymous
  • anonymous
With respect to the circle we have \(A = \pi r^2\) in units squared, then for the side length it is simply \(\sqrt{A} = \sqrt{\pi r^2}\)
Jack1
  • Jack1
thanks guys

Looking for something else?

Not the answer you are looking for? Search for more explanations.