anonymous
  • anonymous
Evaluate the function rule for the given value y = 4 x 2^x for x= -6
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jhannybean
  • Jhannybean
\(\large y=4(2^x)\)?
Jhannybean
  • Jhannybean
Is that the problem?
anonymous
  • anonymous
y= 4 times 2 to the power of x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
out of these: 1/8 1/32 -48 1/16 by "/" i mean a fraction
Jhannybean
  • Jhannybean
ok, so \[\large y=4(2^{(-6)})\]\[\large y=4*\frac{1}{2^{6}}\]\[\large 2^{6}= 64\]\[\large y=4*\frac{1}{64}\]simplify and you'll have your answer
Jhannybean
  • Jhannybean
you can rewrite \[\large 2^{-6} \to \frac{1}{2^6}\]
anonymous
  • anonymous
1/8?
Jhannybean
  • Jhannybean
how many times does 4 go into 64?
anonymous
  • anonymous
|dw:1370220930420:dw|
Jhannybean
  • Jhannybean
\[\large y=\cancel4*\frac{1}{\cancel{64}16}\]
anonymous
  • anonymous
yeah I have no idea how to simplify
Jhannybean
  • Jhannybean
simplify from the lat step?
Jhannybean
  • Jhannybean
let's try the 16's table. \[16 * 1 = 16\]\[16 * 2 = 32\]\[16 * 3 = 48\]\[16 * 4 = 64\] So now that we know 16 times 4 = 64, we would have to cross-cancel. \[\large \frac{4}{1}*\frac{1}{64}\] we see that "16 * 4 = 64" so we can cancel out the 4 and 64 that way. \[\large \frac{1\cancel4}{1}*\frac{1}{\cancel{64}16}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.