• KingGeorge
Group Theory Challenge Problem! Let $$S_n$$ be the group of permutations on $$\{1,2,...,n\}$$, and let two players play a game. Taking turns, the two players select elements one at a time from $$S_n$$. Players may only select elements that have not already been selected. The game ends when the set of selected elements generate $$S_n$$. The player who made the last move loses. Who wins the game? [HINT: Think of this problem in terms of the largest possible set of elements you can have so that you don't generate the whole group.] [HINT 2: What are the orders of the maximal subgroups?]
Meta-math
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.