anonymous
  • anonymous
Using the figure below, what is the locus of points that are equidistant from points C and B?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
anonymous
  • anonymous
a. only point A b. perpendicular bisector of AB c. perpendicular bisector of BC d. perpendicular bisector of AC
anonymous
  • anonymous
@ganeshie8 @.Sam. @phi

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
|dw:1370285047975:dw|
ganeshie8
  • ganeshie8
thats a segment BC. midpoint would be equidistant from both B and C, eh ?
ganeshie8
  • ganeshie8
|dw:1370285122346:dw|
ganeshie8
  • ganeshie8
after that, a point above the mid point would also be equidistant from B and C ?
ganeshie8
  • ganeshie8
|dw:1370285172158:dw|
ganeshie8
  • ganeshie8
|dw:1370285185396:dw|
ganeshie8
  • ganeshie8
u can continue like that, all those points wud be equidistant from both B and C. those points form perpendicular bisector of B and C.
anonymous
  • anonymous
oh so the answer would just be c then?
ganeshie8
  • ganeshie8
Yes ! every point on a perpendicular bisector wud equidistant from its ends.

Looking for something else?

Not the answer you are looking for? Search for more explanations.