anonymous
  • anonymous
SQUARE ROOT OF 4N^3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Luigi0210
  • Luigi0210
\[\sqrt{4n^3}=2n \sqrt{n}\]
anonymous
  • anonymous
HOW U GET THAT
Luigi0210
  • Luigi0210
well the square root of 4 is 2 so you can bring that out and since there are 3 n's, you can bring one of them out

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
smarty:)
anonymous
  • anonymous
How come u can just get 1 of the n's out?
anonymous
  • anonymous
#confused
Luigi0210
  • Luigi0210
it's like \[\sqrt{4}=\sqrt{2*2}\] \[\sqrt{n^3}=\sqrt{(n*n)*n}\]
anonymous
  • anonymous
ohh ok since the s ns are sort of like perfect swuares cuz 2 is a perfect sqaure the 3 is taken out?
Luigi0210
  • Luigi0210
I have a hard time reading that ^_^'
Jhannybean
  • Jhannybean
\[\large \sqrt{4n^3}= \sqrt{\color{red}{2*2}*\color{blue}{n*n}*n} \implies 2n \sqrt{n}\]
Luigi0210
  • Luigi0210
pretty much what the smartypants above me showed :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.