anonymous
  • anonymous
Simplify the expression. 1+i ---- 1-i
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
terenzreignz
  • terenzreignz
When you have a complex number at the denominator, you multiply both the numerator and denominator of the expression by its conjugate...
terenzreignz
  • terenzreignz
That said... what is the conjugate of 1-i ?
ParthKohli
  • ParthKohli
Realizing the denominator. XD

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

terenzreignz
  • terenzreignz
Tips? LOL To get the conjugate of a complex number, a + bi, just change the sign that separates the real and imaginary parts... So... for example... conj ( 4 + 5i ) = 4 - 5i conj ( 3 - 2i) = 3 + 2i and so on
anonymous
  • anonymous
i still dont understand
terenzreignz
  • terenzreignz
Okay, a more direct example... suppose we were to simplify \[\Large \frac{5}{3+4i}\] The denominator is 3 + 4i The conjugate of this denominator is 3 - 4i So we multiply the entire expression by... \[\Large \frac5{3+4i}\times \frac{3-4i}{3-4i}\]resulting into \[\Large = \frac{5\cdot(3-4i)}{(3+4i)(3-4i)}= \frac{5(3-4i)}{3^2 - (4i)^2}=\frac{5(3-4i)}{3^2+4^2}\] \[\Large = \frac{5(3-4i)}{25}=\frac15(3-4i)=\frac34-\frac45i\]
terenzreignz
  • terenzreignz
Time's not on my side @Indiadabest I have to go now, I actually just wanted to peek into OS :) If you're still having problems, I'm sure there are plenty of online users that can walk you through this :D For now ---------------------------------------- Terence out

Looking for something else?

Not the answer you are looking for? Search for more explanations.