ladiesman217
  • ladiesman217
Solve x^2 + 10x + 24 = 0 by completing the square please help me
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
Half the middle number, and it's 'a', then (x+a)^2-b then square that number and put it outside where outside number is b Then you get \[ x^2 + 10x + 24 = 0 \\ \\ (x+5)^2-25+24 = 0 \\ \\ (x+5)^2-1=0\]
ladiesman217
  • ladiesman217
ok
amistre64
  • amistre64
a complete square has to be of the form: (px+q)^2 (px+q)(px+q) = (px)^2 +2pqx + q^2 when p=1 this reduces to: x^2 +2q x + q^2 we can see from this that we can solve for q from the middle term to find a suitable value to add to the equation in the form of q^2-q^2 2q = 10, when q = 5 ... therefore 5^2 - 5^2 can be added to the equation to complete a square

Looking for something else?

Not the answer you are looking for? Search for more explanations.