anonymous
  • anonymous
Find the center and radius for the circle: 2x ^{2}+12x+2y ^{2}+12y+4=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[2x ^{2}+12x+2y ^{2}+12y+4=0\]
anonymous
  • anonymous
I am having trouble remembering the equations for this conic. How would you find the h and k to to solve for the radius, and how what equation do you use to find the center?
.Sam.
  • .Sam.
The equation of a circle is \[(x-a)^2+(x-b)^2=r^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
The idea is to get in \((x-a)^2\) \((x-b)^2\) forms, we can use completing the square. Try start by factoring the 2 out of x and y
.Sam.
  • .Sam.
\[2(x^2+6x)+2(y^2+6y)+4=0\] Then complete the square for (x^2+6x) and (y^2+6y)
anonymous
  • anonymous
Thanks ^.^
.Sam.
  • .Sam.
yw
anonymous
  • anonymous
\[(x^2+6x)+(y^2+6y)=36\] is this correct?
.Sam.
  • .Sam.
Nope, do it carefully you'll get \[2[(x+3)^2-9]+2[(y+3)^2-9]+4=0\] Then \[2 (x+3)^2+2 (y+3)^2-32=0\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.