anonymous
  • anonymous
Help! I give medals Find the coordinates of the centroid M from triangle ABC A(0,0) B(4,4) C(8,2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1370540804927:dw|
ganeshie8
  • ganeshie8
start wid finding the midpoints of AC and AB
ganeshie8
  • ganeshie8
|dw:1370537940763:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
find the coordinates for those midpoints
anonymous
  • anonymous
so I have to find AC and AB then use them points to find M @ganeshie8 ??
ganeshie8
  • ganeshie8
yes, you have find the midpoints first. find them... :)
anonymous
  • anonymous
Ok I think I got it from here Thanks for the help :)
ganeshie8
  • ganeshie8
np :)
anonymous
  • anonymous
for AC I get (-4 -1) and AB I get(-2 -2) then use the cordinctes for thoses to I get -1 and 0.5
ganeshie8
  • ganeshie8
|dw:1370538964859:dw|
ganeshie8
  • ganeshie8
how did u get the negatives.. ?
ganeshie8
  • ganeshie8
|dw:1370539087974:dw|
anonymous
  • anonymous
idk that's how my caculater gave it to me
ganeshie8
  • ganeshie8
|dw:1370539130761:dw|
anonymous
  • anonymous
ooh I subtracet when I was supposta add
ganeshie8
  • ganeshie8
its okay, let me show u the solution, you will understand then :)
ganeshie8
  • ganeshie8
that centroid G, divides the median in 2:1 ratio
ganeshie8
  • ganeshie8
Now use this direct formula for G : G = \(\large ( \frac{mx2+nx1}{m+n} , \frac{my2+ny1}{m+n} )\) m = 2 n = 1
anonymous
  • anonymous
Ok I get M(3 1.5) @ganeshie8
ganeshie8
  • ganeshie8
looks wrong
anonymous
  • anonymous
i didn't do it the way you just gave i ued the midpoint fomula
ganeshie8
  • ganeshie8
coordinates of point that dividing the segment joining (4, 4) and (4, 1) in ratio 2:1 is : \(G = \large ( \frac{mx2+nx1}{m+n} , \frac{my2+ny1}{m+n} )\) \(G = \large ( \frac{2 \times 4+1 \times 4}{2+1} , \frac{2 \times 1+1 \times 4}{2+1} )\) \(G = \large ( 4 , 2 )\)
anonymous
  • anonymous
wouldn't it be 2 2? @ganeshie8
ganeshie8
  • ganeshie8
its (4, 2)
ganeshie8
  • ganeshie8
why do u say 2 2 ?
anonymous
  • anonymous
for AC i have 4 1 and for AB i got 2 2
anonymous
  • anonymous
unsing the midpoint formula right?
ganeshie8
  • ganeshie8
yeah. but AB we dont need here. sorry i told u to find both AC and AB in the initially..
ganeshie8
  • ganeshie8
|dw:1370540043465:dw|
anonymous
  • anonymous
ooh so then you use the midpoint forumula for b and 4 1
ganeshie8
  • ganeshie8
just by using one midpoint and line division formula we got the centroid = (4, 2)
ganeshie8
  • ganeshie8
yes
anonymous
  • anonymous
Ok thank you so much for the help much appreciated :)
ganeshie8
  • ganeshie8
yw :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.