anonymous
  • anonymous
Find 4 consecutive odd integers where the product of the two smaller numbers is 64 less than the product of the two larger numbers. @alli14344 @mathstudent55
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
johnweldon1993
  • johnweldon1993
Well I just finished it on your "now closed" question...go have a look And I cannot just give you answers
johnweldon1993
  • johnweldon1993
Did it at least make sense this time @shortie212 ?
anonymous
  • anonymous
A way to guarantee that a number will be odd is to call it 2n+1 Odd integers skip every other number, so I can call them 2n+1, 2n+3, 2n+5, 2n+7 given: (2n+1)*(2n+3) = (2n+5)*(2n+7)-64 4n^2+8n+3=4n^2+24n+35-64 8n+3=24n-29 16n=32 n=2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
one sec..
anonymous
  • anonymous
and ... 2n+1=5 2n+3=7 2n+5=9 2n+7=11 the numbers are 5, 7, 9 , and 11 ..... CHECK: 5*7=9*11-64 35=99-64 35=35 ok :)
anonymous
  • anonymous
k

Looking for something else?

Not the answer you are looking for? Search for more explanations.