Luigi0210
  • Luigi0210
Does this series converge?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Luigi0210
  • Luigi0210
\[\sum_{n=1}^{\infty} \frac{ n! }{ n^n }\]
anonymous
  • anonymous
series: Σ n! / (n^n) ... n = 1 to ∞ use ratio test to determine convergence: lim |Un+1 / Un| = lim [(n+1)! / (n+1)^(n+1)] / [n! / n^n] = lim (n+1) n^n / (n+1)^(n+1) = lim n^n / (n+1)^n = lim (n/(n+1))^n = lim e^ln (n/(n+1))^n = e ^ lim ln (n/(n+1))^n = e ^ lim n * ln (n/(n+1)) = e ^ lim [ln(1 - 1/(n+1))] / [1/n] and using L'Hopital's rule = e ^ lim [1/(1 - 1/(n+1)) * (1/(n+1)^2] / [-1/n^2] = e ^ - lim 1/(1 - 1/(n+1)) * lim (n/(n+1))^2 = e ^ (-1) * 1 = 1/e and this ratio is less than 1. thus the series is convergent .
Jhannybean
  • Jhannybean
This is how i solved it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
...first let me get some icecream.
Luigi0210
  • Luigi0210
D: I want ice cream.. And thank you @FutureMathProfessor
anonymous
  • anonymous
Any time Luigi. I'll be your mario any day.
Jhannybean
  • Jhannybean
lol?
anonymous
  • anonymous
\(\sum\limits_{n=1}^\infty\frac{n!}{n^n}\) Let's use the ratio test.$$\begin{align*}\lim_{n\to\infty}\frac{(n+1)!}{(n+1)^{n+1}}\times\frac{n^n}{n!}&=\lim_{n\to\infty}\frac{(n+1)n^n}{(n+1)^{n+1}}\\&=\lim_{n\to\infty}\frac{n^n}{(n+1)^n}\\&=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n\\&=\lim_{n\to\infty}\left(1-\frac1{n+1}\right)^n\\&=\lim_{n\to\infty}\left(1-\frac1n\right)^n\\&=\frac1e<1\end{align*}$$
Jhannybean
  • Jhannybean
\[\large \sum_{n=1}^{\infty}\frac{n!}{n^n}\] for factorials and exponents, I would use a ratio test to find whether the series converges or diverges. Ratio Test: \[\large \lim_{n \rightarrow \infty}|\frac{a_{n+1}}{a_n}| = L < 1 \ \therefore \ \sum_{n=1}^{\infty}a_{n} = C\] Define your \(\large a_{n+1}\) and your \(\large a_{n}\) \[\large a_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}\]\[\large a_{n} = \frac{n!}{n^n}\]now take the limit of these two. \[\large \lim_{n \rightarrow \infty}|\frac{a_{n+1}}{a_{n}}|\]\[\large \lim_{n \rightarrow \infty}|\frac{(n+1)!}{(n+1)^{n+1}} * \frac{n^{n}}{(n)!}|\]expand it out \[\large \lim_{n \rightarrow \infty}|\frac{(n+1)n!}{(n+1)*(n+1)^{n}}*\frac{n^n}{n!}|\] cancel out like terms\[\large \lim_{n \rightarrow \infty}|\frac{n^n}{(n+1)^n}|\] put the fraction under one power. \[\large \lim_{n \rightarrow \infty}|(\frac{n}{n+1})^{n}|\]Now if you try taking the limit as n goes to infinity, you'll get \[\large \lim_{n \rightarrow \infty}|(\frac{n}{n+1})^{n}| = (\frac{\infty}{\infty + 1})^{\infty}= \infty\] So we can take the reciprocal of the fraction and put it under 1, because we know if we get infinity in the denominator, 1/infinity = 0. \[\large \lim_{n \rightarrow \infty}|\frac{1}{(\frac{n+1}{n})^{n}}|\] we also know that \[\large (\frac{n+1}{n})^{n} = (1+\frac1n)^n = e\] so \[\large \lim_{n \rightarrow \infty}|\frac{1}{(\frac{n+1}{n})^{n}}| = \frac{1}{e}\]\[\large \text{by definition}: \large \lim_{n \rightarrow \infty}|\frac{a_{n+1}}{a_n}| = \frac{1}{e} < 1 \ \therefore \ \sum_{n=1}^{\infty}a_{n} = C\]
ganeshie8
  • ganeshie8
beautiful :D
Luigi0210
  • Luigi0210
I wouldn't expect anything less from Miss Jhann

Looking for something else?

Not the answer you are looking for? Search for more explanations.